Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1005818, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225375

RESUMO

This study aimed to determine the effect of capsicum oleoresin (CAP) on rumen fermentation and microbial abundance under different temperature and dietary conditions in vitro. The experimental design was arranged in a 2 × 2 × 3 factorial format together with two temperatures (normal: 39°C; hyperthermal: 42°C), two forage/concentrate ratios (30:70; 70:30), and two CAP concentrations in the incubation fluid at 20 and 200 mg/L with a control group. Regarding the fermentation characteristics, high temperature reduced short-chain fatty acids (SCFA) production except for molar percentages of butyrate while increasing acetate-to-propionate ratio and ammonia concentration. The diets increased total SCFA, propionate, and ammonia concentrations while decreasing acetate percentage and acetate-to-propionate ratio. CAP reduced acetate percentage and acetate-to-propionate ratio. Under hyperthermal condition, CAP could reduce acetate percentage and increase acetate-to-propionate ratio, lessening the negative effect of high heat on SCFA. Hyperthermal condition and diet altered the relative abundance of microbial abundance in cellulose-degrading bacteria. CAP showed little effect on the microbial abundance which only increased Butyrivibrio fibrisolvens. Thus, CAP could improve rumen fermentation under different conditions, with plasticity in response to the ramp of different temperature and dietary conditions, although hardly affecting rumen microbial abundance.

2.
Front Vet Sci ; 9: 935634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268048

RESUMO

The present study aims to evaluate the effects of prepartum maternal supplementation of Capsicum oleoresin (CAP) on colostrum quality and growth performance in newborn buffalo calves. Twelve multiparous buffaloes were randomly assigned to two groups starting from 4 weeks prepartum: the control group with a basal diet (CON) and the treatment group with a basal diet supplemented with 20 mg CAP/kg dry matter (CAP20). After birth, all calves were weighed and received colostrum from their respective dam directly within 2 h. After that, calves received pasteurized milk and starter feed till 56 days of age. The results showed that CAP increased lactose (P < 0.05) in colostrum, and it tended to increase monounsaturated fatty acids; however, it decreased colostrum urea nitrogen (P < 0.10). CAP did not affect colostrum yield and immunoglobulin G and M concentrations. The weekly starter intake was not affected by maternal CAP supplementation during the first 6 weeks of life. There was an increasing tendency in weekly starter intake from weeks 7 and 8 (P < 0.10) in CAP20 compared with CON. At 7 days of age, calves in CAP20 had higher immunoglobulin G (P < 0.05) and a decreased tendency in calves' serum glucose compared with CON. Additionally, maternal CAP supplementation increased calves' serum ß-hydroxybutyric acid (P < 0.05) and tended to increase total protein (P < 0.10), while decreased non-esterified fatty acids (P < 0.05) at 56 days of age. Calves in CAP20 had higher final withers height, final heart girth, average withers height, and average heart girth than the CON (P < 0.05). These results suggest that maternal CAP supplementation could improve colostrum quality and positively affect the performance of buffalo calves.

3.
Front Vet Sci ; 9: 842105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387149

RESUMO

The aim of the present study was to determine whether the echotextural features of the mammary gland parenchyma in buffaloes during lactation at different somatic cell levels could be used to diagnose mastitis. This study was divided into two parts. In the first experiment, experimental buffaloes (n = 65) with somatic cell counts (SCC) tests (n = 94) in different seasons, including spring (n = 22), summer (n = 24), autumn (n = 37), and winter (n = 11), were used to obtain ultrasonic variables for each quarter of mammary gland that could best explain the corresponding somatic cell level. In the second part of the study, the first part's experimental results were verified by subjecting at least one-quarter udder of eight buffaloes to ultrasonography seven times during mid-July to mid-August for obtaining ultrasonic values at different somatic cell levels. The echo textural characteristics [mean numerical pixel values (NPVs) and pixel heterogeneity (pixel standard deviation, PSD)] were evaluated using 16 ultrasonographic images of each buffalo with Image ProPlus software. The effects of SCC, days in milk (DIM), scanning order (SO), season, as well as the scanning plane and udder quarter (SP + UQ) on both the PSD and NPVs of the mammary gland were significant (p < 0.05). The correlation coefficient between pre-milking sagittal PSD and somatic cell score (SCS) was the highest (r = 0.4224, p < 0.0001) with fitted linear model: y = 0.19445x (dependent variable: SCS, independent variables: pre-milking sagittal PSD; R 2 = 0.84, p < 0.0001). In addition, SCC and ultrasonic of udder quarter were followed for 1 month, confirming that pre-milking sagittal PSD of mammary gland value could explain the SCC variation in milk. The current study demonstrated that the ultrasonographic examination of the udder could be one of the complementary tools for diagnosing subclinical mastitis in buffaloes.

4.
Animals (Basel) ; 12(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35327194

RESUMO

The present study investigates the effect of Capsicum oleoresin (CAP) supplementation on the dry matter intake, milk performance, plasma metabolites, and nutrient digestibility of dairy cows during the summer. Thirty-two lactating Holstein dairy cows (n = 32) were randomly divided into four groups. The CAP was dissolved in water and added to the total mixed ration with graded levels of CAP (0, 20, 40, and 80 mg/kg of dry matter). The trial period consisted of seven days for adaptation and thirty days for sampling. Data were analyzed using the MIXED and GLM procedure SAS. The linear and quadratic effects were tested. The milk yield, milk fat, and milk urea nitrogen increased linearly with the dietary addition of CAP (p < 0.05). The dry matter intake increased linearly in the 20CAP group (p < 0.05). Additionally, the 4% fat-corrected milk, energy-corrected milk, milk fat yield, and milk fat to milk protein ratio increased quadratically (p < 0.05), while the rectal temperature decreased quadratically (p < 0.05). Serum total cholesterol and non-esterified fatty acids increased linearly (p < 0.05); glucose and ß-hydroxybutyrate tended to increase quadratically with the dietary addition of CAP (p = 0.05). Meanwhile, CAP supplementation did not affect the milk protein yield, blood concentration of triglyceride, insulin, lipopolysaccharide, immunoglobulin G, or heat shock protein 70 expression level (p > 0.05). In addition, nutrient digestibility was comparable among groups (p > 0.05). These findings indicated that CAP supplementation could enhance the lactation performance of dairy cows during the summer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA